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Abstract

A blast furnace is used to produce molten iron from iron oxides, coke, and flux. Ordinarily
a blast furnace is controlled so that the molten iron temperature has some nominal operating
value within some operating range (e.g., approximately 1500◦C ± 30◦C for Ipsat Inland’s No. 7
blast furnace). In spite of the control procedures, the iron temperature sometimes deviates
from this operating range. When it does so for several ladles in succession, the condition is
called a chilled hearth. When this situation arises, manual corrective actions must be taken
to restore the iron temperature to its proper operating range. The corrective actions usually
lead to a decrease in the production rate of molten iron. Furthermore, the lower iron temper-
atures usually indicate a reduction in iron quality because the trace element chemistry in the
iron changes. The combination of these two factors means that iron-making companies seek to
avoid chilled hearth conditions because they are economically expensive.

The overall aim of this project is to construct an automated system which detects the pres-
ence of conditions which could lead to a chilled hearth condition in a blast furnace. Reliably
detecting the onset of these conditions before a chilled hearth occurs would allow corrective
measures to be instituted that would probably prevent the chilled hearth. Since serious chilled
hearth conditions are fairly rare in practice, this problem can be thought of in the context of
anomaly detection. Intuitively, an anomaly detector takes measurements of a system as inputs,
and produces a decision about whether the measurements are unusual and a confidence in that
decision, as outputs. The approach to cold hearth detection discussed in this report is called
the classification method. Roughly speaking, the classification method consists of designing
a system which distinguishes between “normal” and “abnormal” measurements and then as-
signing the current measurements to either the “normal” or the “abnormal” category. The
category to which the current measurements are assigned represents the current state of the
blast furnace.

This report is produced in two parts. The first part is an executive summary that overviews
chilled hearth conditions in a blast furnace, discusses the technical requirements associated
with detecting these conditions, highlights our specific research approach to detecting chilled
hearths, and presents the status of our research along with our current conclusions and future
work objectives. The second part is a technical summary which goes into detail about the
current state our research.
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1 Problem Overview

A blast furnace is used to produce molten iron from iron oxides, coke, and flux. The blast
furnace itself consists of a large cylinder open at the top and having ports at the bottom.
Solids, such as iron ore and coke, are periodically loaded into the top of the furnace to supply
the required raw materials and part of the fuel for the chemical reduction process. Some
of the ports in the bottom are used to inject hot air which supplies both energy and some
chemical components to drive the necessary chemical reactions. The remaining ports are used
to periodically remove molten iron from the furnace. The ports for removing the molten iron
are normally sealed, and when they are tapped and iron is being removed, the process is called
a cast, and the molten iron is called hot metal. During a cast the hot metal is poured into
containers called ladles, which are typically transported to the steel-making facility.

The temperature and trace-element chemistry of the hot metal are measured and recorded
for each ladle. The trace elements typically monitored are manganese, sulfur, silicon, and
titanium. The iron chemistry is monitored because the amounts of these elements affect the
quality of the end products made from the iron. The hot metal temperature is monitored for
two reasons. First, there is a thermal equilibrium between the iron and the slag in the blast
furnace, and the temperature determines what proportion of the trace elements go into the
slag as opposed to the iron. Second, the hot-metal temperature gives an indication of the
location inside the blast furnace where the reduction is taking place. If the reduction occurs
near the bottom of the furnace, the resulting reduction reaction is much more endothermic than
when it occurs nearer the top of the furnace. This change is due to differences in the chemical
constituents inside the blast furnace at different heights. Since the reaction which occurs at
the bottom is quite endothermic, it draws heat out of the molten iron, thereby decreasing the
hot-metal temperature. If reduction continues to occur near the bottom of the furnace, in a
worst case scenario the iron and slag temperatures could become so low that these materials
begin to solidify inside the blast furnace. If this occurs, the blast furnace must be shut down
and the solid material must be removed from the refractory lining material. This process is
extremely expensive both in terms of repair costs and lost production.

To avoid this problem, the blast furnace is controlled so that the hot-metal temperature has
some nominal operating value within some operating range (e.g., approximately 1500◦C± 30◦C
for Ipsat Inland’s No. 7 blast furnace). In spite of the control procedures, the hot-metal
temperature sometimes deviates from this operating range. When it does so for several ladles
in succession, the condition is called a chilled hearth. When this situation arises, manual
corrective actions must be taken to restore the hot-metal temperature to its proper operating
range. The corrective actions usually lead to a decrease in the production rate of hot metal.
Furthermore, the lower hot-metal temperatures usually indicate a reduction in iron quality
since the trace element amounts change. The combination of these two factors makes a chilled
hearth a situation to be avoided because it is economically unprofitable.

2 Technical Objectives

The overall aim of this project is to construct an automated system which detects the presence
of conditions which could lead to a chilled hearth condition in a blast furnace. Reliably detecting
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the onset of these conditions before a chilled hearth occurs would allow corrective measures
to be instituted which would probably prevent the chilled hearth. Since serious chilled hearth
conditions are fairly rare in practice, this problem can be thought of in the context of anomaly
detection. Intuitively, an anomaly detector takes measurements of a system as inputs and
produces a decision about whether the measurements are unusual, and a confidence in that
decision, as outputs.

In the case of Ipsat Inland’s No. 7 blast furnace, sensors measure the wall temperatures
at various locations; the heat flux across various sections of the walls; the internal pressure
at various locations; the composition, pressure, and quantity of gas released at the top of
the furnace; and the quantities of various materials put into the furnace. In addition to hot-
metal temperature and composition, there are roughly 200 separate measurements in total. A
diagram of Ipsat Inland’s No. 7 blast furnace and the particular measurements made on it are
shown in Figure 1. If the hot-metal temperature and composition gave a clear indication of

Figure 1: A diagram of Ipsat Inland’s No. 7 blast furnace and the associated measured quanti-
ties. This furnace is roughly 140 ft. tall and 55 ft. in diameter.

a chilled hearth before it occurred, then solving this problem would be fairly straightforward.
Unfortunately, it appears that this set of quantities measures the effects of a chilled hearth
rather than its causes, so they give no advance warning of the condition. Therefore one is
forced to try to find information related to the causes of a chilled hearth in the other furnace
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measurements. The decision in this detection problem is whether the current state of the blast
furnace is “normal” or “abnormal”. In this case “abnormal” means that the furnace is heading
toward a chilled hearth, and “normal” means that it is not.

Two possible approaches to cold hearth detection are the prediction method and the classi-
fication method. Roughly speaking the prediction method consists of designing a system which
predicts the hot-metal temperature based on the other furnace measurements, and then com-
paring this predicted temperature with the measured hot-metal temperature. If the measured
and predicted temperatures differ by too much, then the current state of the blast furnace is
judged to be “abnormal”; otherwise its state is “normal”. In contrast the classification method
consists of designing a system which distinguishes between “normal” and “abnormal” measure-
ments, and then assigning the current measurements to either the “normal” or the “abnormal”
category. The category to which the current measurements are assigned represents the current
state of the blast furnace. Only the details of the classification method are presented in this
report.

3 Research Approach

The fundamental methodology underlying the classification approach to detecting chilled hearth
conditions is the construction of a function which discriminates between data that precedes
chilled hearth conditions, and data that does not. This approach is based on the intuition
that there is some space containing functions of the measured data in which the samples
that preceded chilled hearth conditions are separable from those samples that did not precede
chilled hearth conditions. This approach requires the measured data to be labeled as one of
two categories, that which preceded a chilled hearth is labeled “abnormal”, whereas that which
does not is labeled “normal”. Naturally the dividing line between data which does and does
not precede a chilled hearth is somewhat arbitrary, but some multiple (probably near unity) of
the residence time of the blast furnace seems an intuitively reasonable choice. The solution to
this problem can be divided into three tasks: first, deciding whether the labeled measured data
is actually separable; second, constructing a subspace of measurements that preserves most of
the separability; third, finding the function that separates the data in this subspace. Typically,
these three tasks are called separability, feature selection, and classification respectively.

Separability can be resolved by estimating the Bayes error for the measured data, where
the two categories are “normal” and “abnormal” as defined previously. The Bayes classifier
is defined to be the classifier which minimizes the probability of misclassification, therefore it
achieves the lowest error rate by definition. In practice, the Bayes classifier cannot actually be
constructed, but the probability of misclassification, also called the Bayes error, that it would
achieve can be estimated. For this problem, the Bayes error is the fraction of time that a
“normal” data point is placed in the “abnormal” class or vice versa. If the two categories are
equally likely and the Bayes error estimate is close to 50%, then this set of measurements does
not contain the information needed to separate the points labeled “normal” from those labeled
“abnormal”. Conversely, if the Bayes error estimate is close to 0%, then the points labeled
“normal” are well separated from those labeled “abnormal”.

Feature selection can be solved by estimating the Bayes error for different subsets of the
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measurements, and choosing a combination that is small in size, while not leading to a large
increase in the Bayes error. Since checking all possible subsets is not practical for a data set
consisting of some 200 different measurements, we will use a procedure which starts with one
measurement and adds measurements one at a time, provided that adding them to the subset
decreases the Bayes error by a sufficiently large amount. Periodically the current subset of
measurements is checked by removing measurements one at a time, if removing them from the
subset increases the Bayes error by a sufficiently small amount.

Classification can be addressed by constructing a piecewise linear function which discrim-
inates between the “normal” and “abnormal” data in the subspace chosen by the feature
selection process. This classifier can then be applied on-line to continuously monitor the blast
furnace for impending cold hearth conditions.

4 Research Status

The three tasks discussed in the previous section: separability, feature selection, and classifi-
cation, build upon one another in a sequential fashion. It should be emphasized that there are
open technical questions associated with all three of these tasks, some of which we will have to
address in some fashion in order to successfully solve the chilled hearth detection problem using
the classification approach. Currently, we have written a program which estimates the Bayes
error from the labeled measurement data. We are currently in the final stages of debugging
this program. We have not yet run this program on the blast furnace data to test how well the
“normal” and “abnormal” data can be separated. Also we have not begun to address the fea-
ture selection or classification tasks, although we have existing programs that should be easily
modified to solve these tasks. In short we believe that the development time will decrease as
we progress through the remaining two tasks.

5 Conclusions

At present we are not certain whether chilled hearths can be detected using the classification
approach, but we have encountered no insoluble problems up to this point. It should be noted
that being able to accurately and efficiently estimate the Bayes error from empirical data is
extremely useful in any classification problem. Therefore the Bayes error estimation program
that we are currently developing will have practical utility in a wide range of application
domains far beyond the current project. In order to properly conduct the separability tests, we
still need additional data for 5 of the 7 examples of severe chilled hearths that were previously
identified by Ipsat Inland. Specifically, we need data from Ipsat Inland for the following dates.

1. 12/7/97 12:00am - 12/11/97 12:00pm

2. 1/10/98 12:00am - 1/18/98 12:00pm

3. 1/29/98 12:00am - 2/2/98 12:00pm

Also there are some partially unresolved issues concerning the order in which ladles are taken
during a cast.
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6 Future Work

The following is a list of the future work that we currently anticipate, in roughly chronological
order.

1. Resolve some technical issues associated with accurately and efficiently estimating the
Bayes error with the current program.

2. Test the blast furnace data to determine how well the “normal” and “abnormal” data
can be separated (i.e., the separability task).

3. Select a subset of the blast furnace measurements which retain most of the separability
between the “normal” and “abnormal” data (i.e., the feature selection task).

4. Construct a system which discriminates between “normal” and “abnormal” data using
this subset of measurements (i.e., the classification task).

5. Install this classification based detector at Ipsat Inland and run it in real-time in an off-
line mode to determine the number of false alarms and correct predictions it produces.

6. After resolving any problems associated with having too many false alarms and/or having
too few correct predictions, switch over to running the system in an on-line mode.

Note that some of these tasks involve a fair number of subtasks.
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Part II

Technical Summary
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Notation

x : A sample vector of measurements of the state of a system.

d : The number of measurements in the sample vector x (i.e., the di-
mension of x).

m : The total number of different classes.

n : The total number of sample vectors x from all classes (i.e., n =∑m
i=1 ni).

ωi : The label of the ith class.

p(x) : The unconditional probability density function for all sample vectors
x.

p(x | ωi) : The probability density function for a sample vector x conditioned
on observing class ωi.

P(ωi) : The prior probability of observing class ωi.

P(ωi | x) : The posterior probability that an observed sample vector x is a mem-
ber of class ωi.

hi(x) : The discriminant function associated with class ωi where i =
1, . . . ,m.

τi : The classification threshold associated with class ωi where i =
1, . . . ,m.

g
(
h(x)

)
: The decision function which assigns a sample x to a particular class

ωi given the discriminant function values and the threshold for x.

P(x
g−→ ωj , x ∈ ωi) : The probability that the sample x is a member of class ωi and it is

classified as being a member of class ωj.

ε : The average probability of misclassifying any given sample x (i.e.,

ε =
∑m

i=1

∑
j 6=iP(x

g−→ ωj , x ∈ ωi).
h∗i (x) : The discriminant function associated with class ωi which produces

the minimum misclassification error ε∗.

τ∗i : The classification threshold associated with class ωi which produces
the minimum misclassification error ε∗.

ε∗ : The minimum average probability of misclassifying any given sample
x. This is called the Bayes error.

Xωi : A set containing the sample vectors x which are members of class ωi.

Yωi : A set containing the labels y for the sample vectors x which are
members of class ωi.

S : A set containing all pairs of measurements and their respective labels
(i.e., S =

⋃m
i=1Xωi ×

⋃m
i=1 Yωi). This set is called the sample set.

Sd : The subset of the sample set which is used to design a classifier (i.e.,
Sd ⊆ S). This set is called the design set.

St : The subset of the sample set which is used to test a classifier (i.e.,
St ⊆ S). This set is called the test set.

13
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hni(x) : The discriminant function associated with class ωi where i = 1, . . . ,m for
a classifier designed using n samples.

τni : The classification threshold associated with class ωi where i = 1, . . . ,m
for a classifier designed using n samples.

εn : The exact classification error for a classifier designed using n samples.

ε̂n : The estimated classification error for a classifier designed using n samples
and tested using a finite number of samples.

ε̂L : The estimated classification error for a classifier designed and tested using
the leave-one-out procedure.

ε̂R : The estimated classification error for a classifier designed and tested using
the resubstitution procedure.

k : The neighborhood size used for the kNN classifier.

vωik (x) : The volume of the neighborhood containing the k closest samples to the
point x from class ωi.

x̄ωik (x) : A function returning the kth nearest neighbor from class ωi of the sample
x.

Di
(
x, x̄ωik (x)

)
: The Mahalanobis distance between the point x and its kth nearest neighbor

from class ωi.

M i : The metric matrix associated with class ωi that is used to measure the
Mahalanobis distance for that class.

hkNN(x) : The discriminant function associated with a kNN classifier for a two class
problem.

τkNN : The classification threshold associated with a kNN classifier for a two class
problem.

εkNN : The classification error associated with a kNN classifier for a two class
problem.

14
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1 Overview of the Classification Problem

While numerous books have been written about pattern classification, the overview presented in
this section is primarily drawn from the material presented in Duda and Hart (1973), Fukunaga
(1990), and Tou and Gonzalez (1974). In a classification problem, measurements of a system
are assigned to a finite number of classes. For a particular set of measurements and classes,
it may be impossible to achieve perfect separation. This difficulty can be illustrated with the
measurements height and weight and the classes male and female. While it is generally true
that men are heavier and taller than women, it does not seem reasonable to claim that all men
and women can be perfectly classified on this basis alone. To make this difficulty more clear,
consider only the measurement height and the class male. Clearly height will be distributed
around some average value with most men lying near this average, but some lying quite far
away from it. A similar situation will exist for the other three pairings of measurements and
classes. This variation in the measurements will create an overlap between the height-weight
distribution for men and for women. The extent of this overlap limits the degree to which
men and women can be separated on the basis of these measurements. The Bayes classification
error is a measure of this fundamental overlap between measurement distributions. Since
this ambiguity is irreducible for a given set of measurements, the Bayes error is the smallest
classification error achievable.

The intuitive argument presented above can be mathematically formalized using the notion
of statistical decision theory, also called hypothesis testing or statistical inference. The number
of measurements made on a particular state of the system is denoted by d, so in the previous
example this dimension is d = 2. A sample vector, denoted by x = [x1 x2 · · · xd], is a set of
measurements for a specific state belonging to a particular class, for instance the height and
weight measurements for a specific man. The fact that the measurements are distributed means
that x is a random variable. The number of classes is m and Ω = {ω0, ω1, . . . , ωm−1} is the
set of all class labels. In the previous example m = 2, and Ω = {male, female}. The probability
that a particular state of the system belongs to class ωi without making any measurements, is
called the prior probability and is denoted P(ωi). In the sense of the previous example, P(ω0)
is the probability that a random person from the population is male. These probabilities reflect
the frequency of occurrence of different classes in the system states. In this framework, the fact
that measurements for a particular class have some distribution is described by the conditional
probability density p(x | ωi) for all samples x from class ωi. This is the probability of obtaining
a particular set of measurements x, given that the current state of the system belongs to class
ωi. In classification the class of a particular state of the system is determined from a particular
sample of measurements. So the desired quantity is P(ωi | x), which is the probability that the
state is a member of class ωi given the sample of measurements x. The relationship between
this desired value and the prior probabilities P(ωi) and the conditional probability densities
p(x | ωi) is

P(ωi | x) =
p(x | ωi) P(ωi)

m−1∑
j=0

p(x | ωj) P(ωj)

, (1)

which is called Bayes rule. The quantity P(ωi | x) is called the posterior probability. The
denominator of Equation (1) is a scaling factor to insure that

∑m−1
j=0 P(ωj | x) = 1. The
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quantity p(x) represents the probability of obtaining a particular set of measurements from the
system, and is called the unconditional probability density.

In classification problems the overall goal is to assign the current state of the system to
a class ωi using the current measurement sample x. One general methodology is to define a
set of discriminant functions hi : X ⊆ Rd → H ⊆ R for all i = 0, . . . ,m − 1, and assign the
sample vector x to class ωi if hi(x) > hj(x) for all i 6= j. The sample vector x is assigned to a
particular class by the decision function g : Hm ⊆ Rm → {ω0, . . . , ωm−1}, which is defined as

g
(
h(x)

)
= arg

m−1
max
i=0

(
hi(x)

)
. (2)

Note that in this equation arg maps the element number i corresponding to the largest value
of hi(x) to the appropriate class label ωi. This slight abuse of notation is justified by the
simplifications it permits in the remaining notation. Using these definitions, a classifier is an
algorithm which computes m discriminant functions and selects the class corresponding to
the largest discriminant function value. Conceptually the discriminant functions partition the
measurement space into m regions R0, . . . ,Rm−1, called decision regions. If g

(
h(x)

)
= ωi,

then the sample x is assigned to class ωi and x lies in region Ri. Clearly, the choice of
discriminant functions and associated decision function is not unique. The class assignment
is not changed if all the discriminant functions are scaled by a positive constant or biased by
a constant. Furthermore, if hi(x) is replaced by f

(
hi(x)

)
where f(·) is monotone increasing,

the resulting classification is unchanged. If the decision function is also modified, then f(·) can
be either monotone increasing or decreasing. In particular, these properties allow the number
of discriminant functions to be reduced by one by either subtracting or dividing one of the
discriminant functions by all of the others. In this case the decision function must be modified
accordingly to match the new set of discriminant functions.

In classification, an error is made or the sample x is misclassified, if the decision function
assigns x to the class ωi when it is actually a member of some other class ωk. The probability
that the sample x is a member of class ωk and it is classified as being a member of class ωi 6= ωk
is denoted P(x

g−→ ωi , x ∈ ωk). The average probability of misclassification ε for all possible
samples is

ε =

∫ m−1∑
k=0

∑
i6=k
P(x

g−→ ωi , x ∈ ωk) dx. (3)

The ideal classifier, called the Bayes classifier, is one that minimizes ε. It can be implemented,
for example, by using the posterior probabilities as discriminant functions (i.e., h∗i (x) =
P(ωi | x)). To see that this choice minimizes ε in in Equation (3), note that for a partic-
ular sample x, the probability of incorrectly classifying that sample is∑

i6=k
P(x

g∗−→ ωi , x ∈ ωk) =
∑
i6=k
P(ωi | x) if we assign x to ωi 6= ωk. (4)

Every time x is measured, the probability of error is minimized by choosing the class such that
g
(
h∗(x)

)
= ωi. Although the same value of x may never be measured twice, this procedure

minimizes the misclassification error in Equation (3) because it minimizes it for every sample,
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hence the integral must also be minimized. The minimum misclassification error is denoted ε∗,
and is called the Bayes error. These ideas are illustrated by the Bayes classifier for a 3-class
problem with 1 measurement in Figure 2. The three decision regions R0, R1, and R2 show

p(x | ω0) P (ω0)

p(x | ω1) P (ω1)

R0 R2 R1 R2

p(x | ω2) P (ω2)

x

p(x | ωi) P (ωi)

Figure 2: The decision regions for the Bayes classifier for a problem in which m = 3 and d = 1,
when the unscaled posterior probabilities are as shown.

the ranges of sample values x which are assigned to classes ω0, ω1, and ω2 respectively. Note
that decision region R2 consists of two disjoint intervals. In the decision region Ri, the value
of p(x | ωi) P(ωi) is always greater than these quantities for the other two classes. The dotted
vertical lines show the locations of the decision boundaries on which h∗i (x) = h∗j (x), where i
and j are found by noting which two curves intersect at that boundary. The curve intersections
are marked with the • symbol. The shaded area is the probability of classifying a sample x
which lies in this interval as class ω2 and misclassifying that particular sample.

In the remainder of this paper we will only consider the special case of classification prob-
lems which have two classes labeled as {ω0, ω1} = {0, 1}. By making use of the previously
discussed properties of discriminant functions, the two-class problem can be solved using the
single discriminant function

h̄(x) =
P(ω1 | x)

P(ω0 | x)
=
p(x | ω1)

p(x | ω0)

P(ω1)

P(ω0)
. (5)

The decision rule for this discriminant function is to assign a sample x to class ω1 when
h̄(x) > 1 and to class ω0 when h̄(x) < 1. Since the term P(ω0)

P(ω1) is independent of x, an
alternative discriminant function and decision rule can be written as

h∗(x) =
p(x | ω1)

p(x | ω0)

ω1

≷
ω0

P(ω0)

P(ω1)
= τ∗. (6)

In this equation the operation h∗(x)≷ω1
ω0
τ∗ means that x is assigned to class ω1 when h∗(x) >

τ∗ and to class ω0 when h∗(x) < τ∗, where τ∗ is called the classifier threshold. So the decision
function associated with h∗(x) is g

(
h∗(x)

)
= sgn

(
h∗(x) − τ∗

)
, where through another slight
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abuse of notation the signum function sgn maps to ω1 when its argument is positive and to ω0

when its argument is negative. The term p(x | ω0)
p(x | ω1) in Equation (6) is often called the likelihood

ratio because p(x | ωi) represents the likelihood of class ωi with respect to x, and so the
classifier defined by Equation (6) is referred to as a likelihood ratio classifier. Note that this
likelihood ratio classifier produces exactly the same decisions and hence has the same error rate
as the Bayes classifier for a two-class problem. When computing the Bayes error for a two-class
problem, Equations (3) and (4) can be combined into the much simpler expression

ε∗ = P(ω0)

∫
R1

p(x | ω0) dx+P(ω1)

∫
R0

p(x | ω1) dx, (7)

where each integral is only over the decision region Ri. More useful forms of this expression
for error analysis are obtained by rewriting this equation as

ε∗ =

∫
h∗(x)>τ∗

P(ω0 | x) p(x) dx+

∫
h∗(x)<τ∗

P(ω1 | x) p(x) dx, (8)

ε∗ = P(ω0)

∫
U
(
h∗(x)− τ∗

)
p(x | ω0) dx+ P(ω1)

∫
U
(
−[h∗(x)− τ∗]

)
p(x | ω1) dx, (9)

ε∗ = P(ω0) E
(
I
(
h∗(x) > τ∗

)
| ω0

)
+ P(ω1) E

(
I
(
h∗(x) < τ∗

)
| ω1

)
. (10)

In Equation (10) E(·) is the expected value, and I(·) is called the indicator function, which
returns 1 when its argument is true and 0 if its argument is false. Clearly the argument of the
indicator function must be a logical expression. In Equation (9) U(·) is the unit step function
where U(z) =

{
1 if z ≥ 0
0 if z < 0 . A useful interpretation of Equation (10) is that the error is the sum

of the conditional means of quantities which depend only on the discriminant function and
threshold. So the error of a classifier can be characterized using only the discriminant function
and threshold.

2 Classification Error Overview

If the prior probabilities P(ωi) and the conditional probability densities p(ωi | x) are exactly
specified, then Equation (7) can be used to explicitly evaluate the Bayes error ε∗ for the two-
class problem. However even in this scenario, it may be impossible to analytically evaluate
the resulting integral. In practice, the values of the prior probabilities, and the functional
forms of the conditional probability densities are usually unknown. In this case assume that we
are given two sets Xωi = {xi(1),xi(2), . . . ,xi(ni)} ⊂ X composed of ni measurements of the
system when its state was in class ωi which are generated according to the unknown distribution
p(x | ωi). Also assume that there are two sets Yωi = {yi(1), yi(2), . . . , yi(ni)} composed of the
the ni class labels yi(j) = ωi for the state of the system during each measurement. The set of all
measurements is denoted XΩ = Xω0 ∪Xω1, and similarly the set of all labels is YΩ = Yω0 ∪Yω1 .
The size of the sets XΩ and YΩ is denoted by n = n0 + n1. The sample set is a combination
of these two sets in which each measurement is paired with its corresponding label, which is
denoted S = XΩ×YΩ = (XΩ,YΩ). So the elements of S are x-y pairs of the form

(
xi(j), yi(j)

)
.

We will only consider the set of discriminant functions and thresholds defined by Equation (6)
such that the conditional densities p(x | ωi) and prior probabilities P(ωi) are estimated from the
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sample set. Furthermore we assume that our estimates are asymptotically consistent, so that
the actual conditional densities and prior probabilities are recovered as n→∞, and therefore so
are the Bayes discriminant function and threshold. Note that estimating a function, such as the
conditional density p(x | ωi), in such a way that the estimate converges to the actual function
as the number of samples approaches infinity is not as trivial as it might appear. Specifically
there are many methods for which this does not occur, but a discussion of this subject is beyond
the scope of this report. For a discussion of the topic of estimating probability densities, see the
text by Silverman (1986). Let hn(x) and τn be the finite sample estimates of the discriminant
function and threshold respectively. These n sample estimates can then be substituted into
Equation (9) to obtain an estimate for the Bayes error εn, and the resulting expression for the
classification error is

εn = P(ω0)

∫
U
(
hn(x)− τn

)
p(x | ω0) dx+ P(ω1)

∫
U
(
−[hn(x)− τn]

)
p(x | ω1) dx. (11)

Since hn(x) and τn differ from h∗(x) and τ∗ in Equation (6) for finite n, this error will differ
from the Bayes error ε∗.

Two statistics which quantify this difference are bias and variance. The bias Bn and variance
Vn of the estimate for the classification error εn computed using n samples are defined by

Bn = En
(
εn − ε∗

)
, (12)

Vn = En
(
[εn − En(εn)]2

)
, (13)

where En(·) is the expected value over sample sets of size n. Intuitively, the bias is the difference
between the average estimate of a quantity and the true value of that quantity. Likewise the
variance is the deviation of the estimate for a quantity around the average estimate of that
quantity. As n→∞ the estimates of the conditional densities and prior probabilities approach
their actual values, and the classification error estimate εn approaches the Bayes error ε∗. In this
case both the bias and the variance approach zero. However, since the number of measurements
is finite, the density and probability estimates have nonzero biases and variances, particularly
when the measurement dimension d is large. Consequently, in practice, the estimate of the
classification error also has a nonzero bias and variance.

Conceptually there are two different sources of error for the estimates of the Bayes error.
One component is caused by using a finite number of samples to design the classifier, and the
other component is the result of using a finite number of samples to test the classifier. The
subset of the sample set used for classifier design Sd ⊆ S is called the design set, and the subset
used for design St ⊆ S is the test set. The design set Sd is assumed to contain n samples, and
the size of the test set St is unspecified. Note that the design and test sets may be different.
The expression for classification error in Equation (11) can be rewritten as

εn =
1

2
+

1

2π

∫ ∫
ej ν (hn(x)−τn)

j ν

(
P(ω0) p(x | ω0)−P(ω1) p(x | ω1)

)
dν dx. (14)

This equation is obtained from Equation (11) by taking the Fourier transform, combining
similar terms, and then writing the inverse Fourier transform. Let the relationship between the
discriminant function and threshold produced by using a finite design sample set, and those
of the Bayes classifier be hn(x) = h∗(x) + ∆h(x) and τn = τ∗ + ∆τ respectively. Also for
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the sake of notational simplicity let P(x) = P(ω0) p(x | ω0) −P(ω1) p(x | ω1). Combining the
expression in Equation (9) for the Bayes error with Equation (14), the bias and variance due
to a finite design set are

Bd(εn) =

∫
h∗(x)=τ∗

Ed
(
∆h(x)

)
P(x) dx− 1

2

∂

∂ξ

(∫
h∗(x)=ξ

Ed
(
∆h2(x)

)
P(x) dx

)∣∣∣∣∣
ξ=τ∗

, (15)

Vd(εn) =

∫
h∗(x)=τ∗

∫
h∗(y)=τ∗

Ed
(
∆h(x)∆h(y)

)
P(x)P(y) dx dy. (16)

In this equation Ed(·) is the expected value taken over the design sample set Sd. These two
expressions are accurate to second order and are derived using a great deal of algebra in
Fukunaga (1990). Since h∗(x) = τ∗ is the Bayes decision boundary defined by Equation (6),
P(x) = 0. This means that because the discriminant functions are chosen from Equation (6),
the variance of the estimated classification error Vd(εn) is zero to second order. Even in this
case the bias of the estimated classification error Bd(εn) is not zero, although its first term is
zero. It is shown in Fukunaga (1990) that the second term in the bias expression is always
positive.

If the integrals in Equation (11) could be evaluated, then an exact value for the n sam-
ple classification error εn could be obtained. However, in practice these integrals are rarely
amenable to analytic evaluation. Therefore the value of εn is estimated by testing the classifier
with a finite number of labeled samples using an error-counting procedure. In this procedure
the estimate of the ω0 error εn0 is obtained by testing each sample in St0, counting the number
of misclassified samples, and dividing by the number of samples from class ω0, which is n0.
Similarly εn1 is estimated by testing the set St1. This estimate for the classification error ε̂n is

ε̂n =
P(ω0)

n0

n0∑
j=1

I
(
g
(
hn(x0(j))

)
6= y0(j)

)
+
P(ω1)

n1

n1∑
j=1

I
(
g
(
hn(x1(j))

)
6= y1(j)

)
. (17)

Note that the sums in Equation (17) are discrete approximations of the integrals in Equa-
tion (11). The bias and variance of the classification error estimates obtained from Equa-
tion (17) are shown by Fukunaga (1990) to be

Bt(ε̂n) = Et
(
ε̂n − εn

)
= 0, (18)

Vt(ε̂n) = Et
(
[ε̂n − Et(ε̂n)]2

)
=

(
P(ω0)

)2
n0

εn0(1− εn0) +

(
P(ω1)

)2
n1

εn1(1− εn1), (19)

where Et(·) is the expected value taken over the elements in the test sample set St. Note that
the bias is relative to actual classification error εn, not the Bayes error ε∗. The estimate ε̂n is
unbiased because Et(ε̂n) = εn and consistent since Vt(ε̂n) → 0 as n0,n1 → ∞. These results
imply that finite test sample size introduces variance into the classification error estimates, but
by itself it introduces no bias.

These two sets of results from Equations (18)-(19) and Equations (15)-(16) can be combined,
as in Fukunaga (1990), to analyze the bias and variance of the estimated classification error
when independent finite size design and test sets are used. In this case, the bias B(ε̂n) is
entirely due to the finite number of design samples and is given by Equation (15). This means
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that with a finite number of samples the estimated classification error is always biased. The
variance V(ε̂n) is approximately equal to the sum of Equations (19) and (16). So with a finite
sample size the estimated classification error always has a non-zero variance. Determining
which effect dominates the variance can only be done if assumptions are made about the form
of the classifier. For quadratic and linear classifiers, Fukunaga (1990) shows that finite test
sample effects dominate the variance, but this is not a general result.

3 L and R Error Estimation Methods

In this section two methods for splitting up a sample set S into design and test sets are discussed.
The material presented here is drawn from Fukunaga (1990) and Devroye, Györfi, and Lugosi
(1996). Previously we have discussed the error estimate εn obtained by using a finite design
sample Sd of size n, and the estimate of this error ε̂n obtained by using a finite test sample St.
Our discussion assumed that all of the samples in S were statistically independent, and that
Sd and St were independent. However, we have not discussed any way to actually generate Sd
and St from a given sample set S. The first method that we discuss for generating Sd and St
is the leave-one-out (L) method, as discussed by Fukunaga (1990). This method was selected
because it produces an almost unbiased estimate of εn. In the L method a different classifier is
designed for each sample x(j) using a design set Sd(j) = {S \ x(j)} which excludes that sample.
The classifier is then tested using the single excluded sample, therefore St(j) = {x(j)}. The L
estimate of the classification error ε̂L is obtained with the error-counting procedure discussed
previously. Therefore ε̂L is given by Equation (17) with g

(
h∗(·)

)
= gL

(
ĥLj(·)

)
, where the

subscript on ĥLj(·) indicates that each sample x(j) has a different discriminant function. If all
the samples in S are independent, then it is clear that the design and test sets for each classifier
are independent under this method, since the sample being tested is never in the design set.
One reason for using this method is expressed by the following theorem.

Theorem 1 (Devroye et al. (1996)). Given that ε̂L is the classification error estimate ob-
tained by using the leave-one-out method for n sample pairs drawn from the set (XΩ,YΩ). Then
for any n

En(ε̂L)− εn−1 = 0.

This theorem means that the average value of the L error estimate is equal to the expected
classification error obtained for a classifier designed with n− 1 samples. This is referred to as
an almost unbiased estimate. While this result is very useful, it says nothing about how much
a particular estimate ε̂L can be expected to vary around εn−1. An asymptotic statement about
this variation for a particular type of classifier is presented in the next theorem.

Theorem 2 (Devroye et al. (1996)). Given that ε̂L is the leave-one-out error estimate for
a kNN classifier designed with n sample pairs from the set (XΩ,YΩ). Then for every δ > 0

P
(
|ε̂L − εn−1| > δ

)
≤ 2 e

−
(

n δ2

k2 β2(d)

)
,

where β(d) is a constant which depends only on the measurement dimension d. Clearly this
implies that limn→∞ P

(
|ε̂L − εn−1| > δ

)
= 0 . Thus the leave-one-out error estimate for a kNN

classifier is weakly consistent.
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The kNN classifier is discussed in detail in Section 4. This result means that the variation of
a particular L estimate goes to zero as the number of samples increases, when a kNN classifier
is used. Note that a general result of this type for any form of classifier cannot be achieved. In
fact, for some forms of classifier this result can be shown not to hold.

Because of the potentially large bias between the classification error estimate ε̂L and the
Bayes error ε∗, we would have greater confidence if we also knew upper and lower bounds for
the Bayes error estimate. These bounds can be calculated by designing classifiers based on
the sample set S using two different methods, such that one method on average is biased high
and the other biased low. These two different classifiers lead to two estimates of ε∗, one biased
high and the other low. Since the bias of εn in Equation (15) is always positive, εn itself is
an upper bound for the Bayes error. This means that the L method just discussed can be
used to generate an upper bound for the ε∗. Generating a classification error estimate that is
guaranteed to be a lower bound of ε∗ is extremely difficult, but it is straightforward to generate
an error estimate which is guaranteed to be a lower bound of εn. The procedure that we will
use for this purpose is called the resubstitution (R) method, as discussed by Fukunaga (1990).
In the R method all available samples are used to design the classifier Sd = S, and the same
sample set is then tested St = S. The R estimate of the classification error is also obtained using
an error-counting procedure. Therefore the R estimate for the classification error ε̂R is given by
Equation (17) with g

(
h∗(·)

)
= gR

(
ĥR(·)

)
. It is shown in Fukunaga (1990) that E(ε̂R) ≤ E(ε̂L),

which means that on average the R error is a lower bound for the L error. Intuitively this should
be somewhat clear since in the R method each test sample is also in the design set, hence the
design and test sets are dependent. On the other hand, in the L method the design and test
sets are always independent, since the sample being tested is never in the design set. A more
specific characterization of the difference between ε̂L and ε̂R for a specific type of classifier is
given by the following theorem.

Theorem 3 (Devroye and Wagner (1979)). Given that ε̂L and ε̂R are the leave-one-out
and resubstitution error estimates, respectively, for a kNN classifier designed with n sample
pairs from the set (XΩ,YΩ). Then for any (2 k − 1) ≤ n− 1

E
([
ε̂R − εn

]2)−2E
([
ε̂L − εn

]2)≤ 8√
2π (2 k − 1)

.

The kNN classifier is discussed in detail in Section 4. This theorem means that for sufficiently
large values of k, the R error estimate ε̂R becomes a reasonable estimate of both the the L error
estimate ε̂L and the n sample classification error εn. Unfortunately this theorem makes only
an oblique statement about the relationship between ε̂L and ε̂R. A clearer formulation of this
relationship is in progress. Since we use kNN classifiers in computing the Bayes error estimate,
both Theorems 2 and 3 are very relevant to this work.

The relationship between these two classification errors, ε̂L and ε̂R, is shown in Figure 3
as a function of the number of samples n. The quantity Bn(ε̂L − ε∗) is the bias of εL given
by the sum of Equations (15) and (18). As noted in Section 2 the finite test sample does not
contribute to the bias. This bias decreases as the number of samples n in the design set Sd
increases. The dark shaded band is the variance of εL due to the finite design set given by
Equation (16). Although this variance is zero to second order, this region has been included
because higher order terms are often non-negligible in the variance calculation. The light band
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Vn(ε̂L)

En(ε̂L)

En(ε̂R)

ε∗

n

Vn(εL)

Bn(ε̂L − ε̂R)
Bn(ε̂L − ε∗)

εn

Figure 3: The relationship between the L error estimate ε̂L and the R error estimate ε̂R. The
dark shaded region is the variance associated with εL given an infinite number of test
samples. The light shaded region is the additional variance incurred by using a finite
number of test samples.

is the additional variance introduced by estimating ε̂L using a finite number of test samples
given by Equation (19). The quantity Bn(ε̂L − ε̂R) is the bias between the L error and the
R error. This bias also decreases as the number of samples n in the design set Sd increases.
However, computing an explicit expression for Bn(ε̂L − ε̂R) is a non-trivial endeavor which is
currently in progress. Note that if the bias Bn(ε̂L − ε∗) associated with the L error is small
enough, then the R error is a lower bound for the Bayes error, but this is very difficult to
guarantee.

4 k-Nearest Neighbor Classifiers

In this section the k-nearest neighbor (kNN) classifier is introduced. The material presented
here is drawn from Fukunaga (1990), Devroye et al. (1996), and Silverman (1986). We use
this type of classifier because it is shown in Devroye et al. (1996) that its classification error
approaches the Bayes error asymptotically. Constructing the kNN classifier begins by estimat-
ing the conditional densities p̂(x | ωi) in the following way. Around each sample point x(j)
consider a local region with volume vωik

(
x(j)

)
. The probability mass contained in this volume

is approximately p̂
(
x(j) | ωi

)
vωik
(
x(j)

)
. This probability may be approximated by considering

ni samples, computing the volume vωik
(
x(j)

)
which contains the k closest samples to the point
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x(j) from class ωi, and computing the ratio k
ni

. Therefore the density function estimate for an
arbitrary sample x is

p̂
(
x | ωi

)
=

k − 1

ni v
ωi
k

(
x
) , (20)

where k − 1 is chosen rather than k to ensure that the density estimate is unbiased, as shown
in Fukunaga (1990). The nature of this density estimate around a single point x(j) is shown in
Figure 4. Intuitively, at every sample the kNN density estimate places a window of constant

p̂
(
x(j) | ωi

)
?

•

∗

∗

∗

x(j)
x̄ωik
(
x(j)

)
xω0

1

xω1
1

xω0
2

vωik
(
xi(j)

)

Figure 4: The kNN density estimate p̂
(
x(j) | ωi

)
for the sample point x(j). The shaded region

is the volume of the hyper-ellipsoid bounded by the kth closest point from class ωi.
The height of this window is the density estimate.

height which has a hyper-ellipsoidal footprint. The height of the window is computed from
Equation (20). The size of the hyper-ellipsoid is determined by the distance from the sample
point to the kth closest point from class ωi, and therefore varies with the sample point being
considered. The form of the distance measure determines the specific shape of the hyper-
ellipsoid. The variable k represents the neighborhood size.

It is proved by Fukunaga (1990) that the volume for the hyper-ellipsoid in kNN is

vωik (x) = π
d
2 Γ−1

(
d

2
+ 1

) ∣∣M i

∣∣ 12 Ddi (x, x̄ωik (x)
)
, (21)

where Γ−1(·) is the inverse of the Gamma function, and x̄ωik (x) is a function which returns the
kth nearest neighbor from class ωi of the input sample x. The quantity

∣∣M i

∣∣ is the determinant
of the metric matrix for class ωi where M i is symmetric and positive definite. One possible
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choice for the metric matrix is the covariance matrix Σi associated with class ωi. If the actual
covariance matrices are unknown they can be estimated from the samples by

Σ̂i =
1

ni − 1

ni∑
j=1

(
xi(j)− µ̂i

) (
xi(j) − µ̂i

)T
, (22)

µ̂i =
1

ni

ni∑
j=1

xi(j). (23)

The quantity µ̂i is the sample mean for class ωi and the notation wzT denotes the outer product
of two vectors. Note that the sample covariance matrix is symmetric and positive semi-definite.
The function Di

(
x, x̄ωik (x)

)
in Equation (21) is the Mahalanobis distance between the sample

point x and its kth nearest neighbor from class ωi, which is computed by

Di(x,y) =
√

(x− y)T M i (x− y). (24)

The notation wTz denotes the inner product of two vectors. It is straightforward to show that
the surfaces of constant distance under the Mahalanobis metric are hyper-ellipses, which is why
the window footprint of the kNN density estimate is hyper-ellipsoidal.

The discriminant function and decision rule for the kNN classifier are obtained by substi-
tuting Equations (20) and (21) into Equation (6). This leads to the expression

k − 1

n1 v
ω1
k (x)

n0 v
ω0
k (x)

k − 1

ω1

≷
ω0

P(ω0)

P(ω1)
,

∴ hkNN (x) =
D2

0

(
x, x̄ω0

k (x)
)

D2
1

(
x, x̄ω1

k (x)
) ω1

≷
ω0

(
n1

∣∣M1

∣∣
n0

∣∣M0

∣∣ P(ω0)

P(ω1)

) 2
d

= τkNN , (25)

⇒
(
n0 |M0|
P(ω0)

) 1
d

D0

(
x, x̄ω0

k (x)
) ω1

≷
ω0

(
n1 |M1|
P(ω1)

) 1
d

D1

(
x, x̄ω1

k (x)
)
.

The kNN decision rule can be interpreted from the last line of this equation. If the terms(
ni |M i|
P(ωi)

) 1
d

are considered as scaling factors, then the sample point x is assigned to class ω0

if the scaled distance to the kth point from class ω0 is less than the scaled distance to the
kth point from class ω1; otherwise it is assigned to class ω1. The kNN discriminant function
hkNN(x) is piecewise linear and therefore continuous. For a problem with two measurements per
sample, the decision boundary h1NN(x) = τ1NN for a 1NN classifier is shown in Figure 5. The
classification error ε̂kNN for the kNN classifier can be computed by substituting Equations (20)
and (25) into Equation (14). The resulting expression is a function of both the neighborhood
size k and the number of samples in each class n0 and n1. One reason for using the kNN
classifier is the following theorem.

Theorem 4 (Devroye et al. (1996)). Given that εn is the classification error for a kNN
classifier designed using n sample pairs from the set (XΩ,YΩ). If k →∞ and n→∞ in such
a way that k

n
→ 0, then for every δ > 0 and every distribution of the pair (XΩ,YΩ) there exists

an nm(k) such that for n > nm(k)

P
(
εn − ε∗ > δ

)
≤ 2 e

−
(

n δ2

72β2(d)

)
,
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x1

x2

ω0

ω1

h1NN(x) = τ1NN

Figure 5: The decision boundary for a 1NN classifier for a problem with two measurements per
sample.

where β(d) is a constant which depends only on the measurement dimension d. Clearly this
implies that limn→∞P

(
εn − ε∗ > δ

)
= 0. Thus the kNN classifier is strongly universally

consistent.

This result means that as the neighborhood size and the number of samples in the design set
Sd is increased, the classification error for the kNN classifier gets arbitrarily close to the Bayes
error for every set Sd except for a group of sets Sd which have zero probability of being chosen,
no matter how the samples in Sd are selected. A useful property of kNN classifiers for finite k
is shown by the following theorem.

Theorem 5 (Devroye et al. (1996)). Given that εn is the classification error for a kNN
classifier designed using n sample pairs from the set (XΩ,YΩ). If k is fixed and n→∞ (which
implies that k

n
→ 0), then for any distribution of the pair (XΩ,YΩ)

lim
n→∞

E(εn) = ε∗kNN.

Furthermore ε∗ ≤ · · · ≤ ε∗kNN ≤ · · · ≤ ε∗2NN ≤ ε∗1NN ≤ 2 ε∗. For a fixed value of k the kNN error
is bounded by ε∗kNN ≤ ε∗ + 1√

(2 k−1) e
.

This means that for every neighborhood size k, as the number of samples in Sd is increased, the
classification error becomes arbitrarily close to its ideal value, and this ideal value lies between
the Bayes error and twice the Bayes error. Note that both of these results assume that all of
the samples from Sd are statistically independent. Also note that these results are independent
of the metric used to measure distance.
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Unfortunately, the above results apply only in an asymptotic sense; therefore for finite
values of k, n0, and n1 the classification error estimates ε̂kNN for kNN still have a bias and
variance as given by Equations (18), (19), (15), and (16). The variance can be reduced by
increasing n, and/or by averaging results over several bootstrapped sample sets. The bias can
be controlled in part by adjusting the parameters of the kNN classifier (e.g. the metric matrices
and τ). When the bias is small it can be approximated by the following expression (obtained
using a variation on the development in (Fukunaga, 1990)).

Bd(εn) ∼= c0

(
1
k−1 + ∆t2

2

)
+ (c1 + c2∆t)

(
1

k−2

) (
k−2
n′
)2/d

+

(c3 + c4∆t)
(

1 + 1
k−2

) (
k−2
n′
)4/d − c5 (k−1

n′
)4/d − c2∆t

(
k−1
n′
)2/d (26)

where n′ = n0 = n1, the ci are constants for a given problem, and ∆t is a measure of the
deviation of τ from its ideal value in (25). Note that it may be possible to reduce the bias by
choosing ∆t 6= 0, which is an idea we exploit later.

5 Summary of Fukunaga’s Work

Using the framework established in Sections 1, 2, 3, and 4, a technique for estimating the Bayes
error from empirical data may be outlined. It should be stated up front that the following
negative result has been proved.

Theorem 6 (Devroye et al. (1996)). For every sample size n, for any estimate ε̂n of the
Bayes error ε∗, and for every δ > 0, there exists a distribution of samples (X,Y) such that

E
(
|ε̂n − ε∗|

)
≥ 1

4
− δ.

This means that no method of estimating the Bayes error guarantees a certain finite sample
performance for all distributions. This problem exists because for any estimation procedure
there is always some sample distribution for which the method converges to the Bayes error
arbitrarily slowly with increasing sample size. However having some idea of the best possible
classification error for a problem is so useful that we will assert that trying to estimate this
quantity is still extremely worthwhile even though it cannot be done well in all cases.

Finite sample estimates of the classification error for the kNN classifier in Equation (25) can
be obtained using the R and L methods discussed in Section 3. A straightforward implemen-
tation of these methods is shown in Algorithm 1. Note that error estimates are computed for
k = 2, 3, ..., kmax where kmax is a user specified parameter. The KnnDistance routine returns a
list of squared distances from x[i] to its kmax nearest neighbors. A brute force implementation
of this routine runs in time proportional to kmaxnd

2. There is a significant body of research
devoted to the development of more efficient methods for retrieving nearest neighbors, but such
enhancements have not been considered in this paper. The overall run time of Algorithm 1 is
proportional to kmaxn

2d2 .

In practice, with finite k and n, the error εn of the volumetric kNN method can be much
larger than ε∗, and the estimates produced by Algorithm 1 may be biased away from ε∗. To
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Algorithm 1 ErrKnnBase: Baseline algorithm for producing R and L error estimates

INPUTS: P(ω0),P(ω1),Σ0,Σ1, kmax,S = XΩ × YΩ

OUTPUTS: Error Counts ek for k = 2, 3, ..., kmax

{Initialization}
τ =

(
P(ω0)n1|Σ1|1/2
P(ω1)n0|Σ0|1/2

)2/d

for k = 2 to kmax do
ek = 0

end for

{Main Loop}
for all (x[i], y[i]) ∈ S do

if (Method = L) then
D2

0 ← KnnDistance(x[i], kmax,Xω0 − {x[i]},Σ0)
D2

1 ← KnnDistance(x[i], kmax,Xω1 − {x[i]},Σ1)
else
D2

0 ← KnnDistance(x[i], kmax,Xω0 ,Σ0)
D2

1 ← KnnDistance(x[i], kmax,Xω1 ,Σ1)
end if
for k = 2 to kmax do
h← D2

0[k]/D2
1[k]

if ( ((h < τ) ∧ (y[i] = ω1)) ∨ ((h > τ) ∧ (y[i] = ω0)) ) then
ek ← ek + 1

end if
end for

end for

Return({ek})

obtain a reliable estimate of ε∗ we must either reduce the bias, adjust for the bias, or both.
The bias can often be reduced by modifying the volumetric kNN classifier (i.e. changing its
parameters). To adjust for the bias, we simply subtract it from εn to produce an estimate
of ε∗. This requires an analytical expression for the bias as a function of known quantities,
or quantities that can be reliably estimated. Fukunaga has developed a family of techniques
for error estimation that combine these two approaches (Fukunaga, 1990). The next section
discusses bias reduction methods.

In the development that follows, we consider several alternatives to Algorithm 1, some of
which make repeated references to nearest neighbors and their distances. To avoid searching the
entire data set each time a nearest neighbor reference is made, we pre-compute lists of nearest
neighbors and their distances (sorted by distance). There are two lists for each sample, one for
nearest neighbors from ω0 and the other for nearest neighbors from ω1. For obvious reasons
these lists must be at least kmax in size. Later we develop techniques that require them to be
slightly larger, so let us assume that they have size LSize which satisfies kmax < LSize < 2kmax.
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The algorithm to build the nearest neighbor lists (which are referred to collectively as the NN
table) is shown in Algorithm 2. The NNInsert routine inserts the (x[j],D2) pair into a (sorted)
nearest neighbor list of size LSize for sample x[i]. Samples that are farther than LSize away are
dropped from the list. The insertion takes time O(LSize). The overall run time of Algorithm
2 is of order n2(d2 + 2kmax).

Algorithm 2 BuildKnnTable: Build NN0 and NN1 list for each sample (lists contain nearest
neighbors and their distances)

INPUTS: Σ0,Σ1, LSize,S = XΩ × YΩ

OUTPUTS: Table of NN Lists NN0[n][LSize] and NN1[n][LSize] where n = |S|

for all x[i] ∈ XΩ do
for all x[j] ∈ XΩ do

if ((Method = L) ∧ (x[i] = x[j])) then
Skip to the next x[j]

end if
if (y[j] = ω0) then
D2 ← D2

0(x[i],x[j])
NNInsert(x[j],D2,NN0[i])

else if (y[j] = ω1) then
D2 ← D2

1(x[i],x[j])
NNInsert(x[j],D2,NN1[i])

end if
end for

end for

Return(NN0,NN1)

5.1 Bias Reduction Methods

One of the simplest (and most effective) ways of reducing bias is to replace the fixed formula
for τ in Algorithm 1 with a data driven choice of τ̂ . Note that once we introduce a data driven
parameter into the classification rule, we must revise the L estimation procedure. This revi-
sion often gives rise to a significant increase in computational complexity. Fukunaga suggests
approximation procedures that strike a balance between the ideal procedure and its computa-
tional requirements. These procedures often reduce the bias to the point where the error of the
kNN classifier is quite close to the Bayes error so that the upper and lower bounds obtained
using the L and R procedures often provide reasonable bounds for ε∗. Fukunaga suggests the
following threshold adjustment methods:

ErrKnnTemin: This method chooses a different threshold for each value of k. Each threshold
is chosen to minimize the empirical error as shown in Algorithm 3. Once the kNN distance
ratios have been computed for each sample, the (h[i], y[i]) pairs are sorted by their h[i]
values so that the MinError routine can determine the minimum error with a single scan
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of the list, updating the error count as it goes. Once the nearest neighbor tables have been
built, the run time of this algorithm is proportional to kmaxn(logn+2). This approach is
likely to bias the error estimate low, and is therefore appropriate for the R error estimate
only.

Algorithm 3 ErrKnnTemin: Compute L and R error estimates. Use a different threshold for
each value of k. The threshold minimizes the error over the sample set ratios.

INPUTS: Σ0,Σ1, kmax, LSize,S = XΩ × YΩ

OUTPUTS: Error Counts ek, k = 2, 3, ..., kmax

(NN0,NN1)← BuildKnnTables(Σ0,Σ1, LSize,S)

{The D2(NNj [i][k]) operation retrieves the squared distance to the kth NN of x[i] from ωj}
for k = 2 to kmax do

for all x[i] ∈ XΩ do
h[i]← D2(NN0[i][k])/D2(NN1[i][k])

end for
ρ← Sorth({h[i], y[i]}) {sort the (h, y) pairs by ratio value}
ek ← MinError(ρ) {scan the (h, y) pairs to locate the minimum error split}

end for

Return({ek})

ErrKnnTlnnlist: This method chooses a different threshold for each data sample (and each
value of k). The threshold for sample x[i] is found by leaving x[i] out of the nearest
neighbor lists, and then minimizing the empirical error over the remaining samples as
shown in Algorithm 4. This is a true leave-one-out method in that it completely removes
the effect of x[i] when choosing the threshold for x[i] and is therefore used for the L error
estimate only. Once the nearest neighbor tables have been built, the run time of this
algorithm is proportional to kmaxn

2(logn + 3) (approximately n times slower than the
ErrKnnTemin method).

ErrKnnTlratio: Like the previous method, this method chooses a different threshold for each
data sample (and each value of k). It can be viewed as an approximation to the ErrKn-
nTlnnlist method (and is therefore be used for the L error estimate only). Here the
threshold for sample x[i] is found by removing its entry from the ratio list and then
minimizing the empirical error over the remaining samples. Note that this is not a true
leave-one-out method, since x[i] continues to influence its own threshold through its
participation in the nearest neighbor lists of the remaining samples. Nevertheless, this
method tends to give results comparable to the ErrKnnTlnnlist method, and can be
implemented more efficiently. A brute force implementation of this method is shown in
Algorithm 5. Once the nearest neighbor tables have been built, the run time of this
algorithm is proportional to kmaxn(n+log n+1), which is roughly a factor of logn faster
than Algorithm 4. It would be hard to justify this approximation to ErrKnnTlnnlist

with such a meager computational savings, but it turns out that a more efficient im-
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Algorithm 4 ErrKnnTlnnlist: Compute L error estimate. Use a different threshold for each
sample. The threshold minimizes the error over the remaining samples with the current sample
left out of their NN lists.

INPUTS: Σ0,Σ1, kmax, LSize,S = XΩ × YΩ

OUTPUTS: Error Counts ek, k = 2, 3, ..., kmax

(NN0,NN1)← BuildKnnTables(Σ0,Σ1, LSize,S)

for all x[i] ∈ XΩ do
{Remove x[i] from the NN lists}
if (y[i] = ω0) then

for j = 1 to n do
NN∗0 [j]← Remove(x[i],NN0[j])

end for
else

for j = 1 to n do
NN∗1 [j]← Remove(x[i],NN1[j])

end for
end if
{Find threshold over XΩ − {x[i]} and apply to x[i]}
for k = 2 to kmax do

for all x[j] ∈ XΩ − {x[i]} do
h[j]← D2(NN∗0 [j][k])/D2(NN∗1 [j][k])

end for
ρ← Sorth({h[j], y[j]}) {sort the (h, y) pairs by ratio value}
τ ← MinErrorThreshold(ρ)
if ( ((h[i] < τ) ∧ (y[i] = ω1)) ∨ ((h[i] > τ) ∧ (y[i] = ω0)) ) then
ek ← ek + 1

end if
end for

end for

Return({ek})

plementation exists with run time proportional to kmaxn(logn + 4) (once the nearest
neighbor tables have been built). This saves a factor of n over the ErrKnnTlnnlist
method, and is roughly proportional to the run time of the ErrKnnTemin method.
This implementation is described in detail in Section 7.

The threshold selection methods just described are very effective at moving the classification
performance of the volumetric kNN classifier close to the Bayes error, as we will illustrate in
Section 8. But our development of these methods is not yet complete. Up to now we have
assumed that the metric matrices Σ0 and Σ1 used in the distance formulas are known in
advance. In practice they must be estimated from the data. It is natural to think of Σ0 and
Σ1 as covariance matrices for ω0 and ω1, and to estimate them using the well-known maximum
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Algorithm 5 ErrKnnTlratio: Compute L error estimate. Use a different threshold for each
sample. The threshold minimizes the error over the remaining samples with the current sample
left out of the ratio list.

INPUTS: Σ0,Σ1, kmax, LSize,S = XΩ × YΩ

OUTPUTS: Error Counts ek, k = 2, 3, ..., kmax

(NN0,NN1)← BuildKnnTables(Σ0,Σ1, LSize,S)

{The D2(NNj [i][k]) operation retrieves the squared distance to the kth NN of x[i] from ωj}
for k = 2 to kmax do

for all x[i] ∈ XΩ do
h[i]← D2(NN0[i][k])/D2(NN1[i][k])

end for
ρ← Sorth({h[i], y[i]}) {sort the (h, y) pairs by ratio value}
for all x[i] ∈ XΩ do
τ ← MinErrorThreshold(ρ− {(h[i], y[i])})
if ( ((h[i] < τ) ∧ (y[i] = ω1)) ∨ ((h[i] > τ) ∧ (y[i] = ω0)) ) then
ek ← ek + 1

end if
end for

end for

Return({ek})

likelihood formula from Equation (22). However, this choice for Σ0 and Σ1 does not necessarily
produce an optimal classifier. Fukunaga’s analysis suggests that a different choice of Σ0 and
Σ1 may reduce the bias of the classifier (Fukunaga, 1990). Unfortunately there is no closed
form expression for the optimal Σ0 and Σ1, so in the interest of simplicity (and computational
efficiency) we use the expression in (22) (as does Fukunaga).

Since Σ̂0 and Σ̂1 are data dependent parameters of the classifier, they will contribute to the
bias and variance of our error estimates. Specifically, when Σ̂j is used in the classification of
xj[i], the result is likely to be unfairly biased in favor of assigning xj[i] to ωj. This is acceptable
for the R error estimates, but not for the L error estimates. To remove this bias for the L error
estimates we must remove the contribution of xj [i] on Σ̂j before forming its nearest neighbor
list NNj[i].

Formation of the nearest neighbor lists is currently the computational bottleneck in our
algorithms, and we would like to avoid computing them twice: once for the R error estimates
and a second time for the L error estimates. Our solution is as follows. First we build the
nearest neighbor lists using Algorithm 2 with metric matrices Σ̂0 and Σ̂1 formed from all n
data samples. These lists are then used to compute the R error estimates. Afterwards we adjust
the nearest neighbor lists according to a leave-one-out strategy as follows. For each sample xj [i]:

we remove its influence on Σ̂j, recompute the distance to each sample in its nearest neighbor

list using the new Σ̂j, and then re-order the neighbors as needed. Once all entries in the nearest
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neighbor list have been adjusted, Σ̂j is restored to its original form. Note that this operation
may cause a re-ordering of the samples in the list. For this reason the original nearest neighbor
list should be larger than kmax so that samples that have the potential of moving into one of
the first kmax positions (from outside) are considered in the re-ordering process. The exact size
needed for the list is problem dependent. Empirical observations suggest that LSize = 2kmax
is a very conservative choice. The complete algorithm is shown in Algorithm 6. The run time
of this algorithm is proportional to 2n(d2 + 4k2

max + 2kmaxd
2), which is usually dominated by

the nkmaxd
2 term. For kmax � n this is nearly n times faster than rebuilding the nearest

neighbor lists from scratch.

Algorithm 6 AdjustNNlistLOO: Adjust NN0 and NN1 list for each sample by removing the
effect of xj[i] on Σ̂i and then recomputing the distance to its neighbors, and re-ordering them
in the list.

INPUTS: Σ0,Σ1, LSize,NN0[n][LSize],NN1[n][LSize],S = XΩ × YΩ

OUTPUTS: Adjusted NN Lists NN0[n][LSize] and NN1[n][LSize]

for all x[i] ∈ Xω0 do
Σ̂0 ← remove effect of x[i] on Σ̂0

for j = 1 to LSize do
x← NNRemove(NN0[i], j)
D2 ← D2

0(x[i],x)
NNInsert(x,D2,NN0[i])

end for
Σ̂0 ← restore effect of x[i] on Σ̂0

end for

for all x[i] ∈ Xω1 do
Σ̂1 ← remove effect of x[i] on Σ̂1

for j = 1 to LSize do
x← NNRemove(NN1[i], j)
D2 ← D2

1(x[i],x)
NNInsert(x,D2,NN1[i])

end for
Σ̂1 ← restore effect of x[i] on Σ̂1

end for

Return(NN0,NN1)

When using the ErrKnnTlratio method to form the L error estimate, the adjustments
made by Algorithm 6 are sufficient to compensate for the use of a data driven Σ̂. These
adjustments can be made prior to invocation of the ErrKnnTlratio procedure (but obviously
after the nearest neighbor tables have been built and used for the R error estimate). When
the ErrKnnTlnnlist method is used, however, there are two places where the Σ̂j matrices
should be adjusted. When xj [i] is removed from the nearest neighbor lists, we should also

remove its influence on Σ̂j before computing nearest neighbors for the remaining samples.
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Routine Name Time Complexity Comments

BuildKnnTable tp = n2(d2 + 2kmax) pre-processing step

AdjNNlistLOO ta = 4nk2
maxd

2 (L) adjusts NN list for each sample by

removing effect of sample on metric matrix

ErrKnnBase kmaxn
2d2 (R or L) baseline routine for estimating ε,

estimate often biased away from ε∗

ErrKnnTemin tp+ (R) choose threshold that minimizes

kmaxn(logn+ 2) empirical error (biased low)

ErrKnnTlnnlist tp + ta+ (L) choose threshold that minimizes

kmaxn
2(logn+ 3) empirical error after leaving x[i] out

of NN lists (approx. LOO rule for Σ̂)

ErrKnnTlnnlist∗ tp+ (L) choose threshold that minimizes

k2
maxn

2d2 empirical error after leaving x[i] out

of NN lists (exact LOO rule for Σ̂)

ErrKnnTlratio tp + ta+ (L) choose threshold that minimizes

kmaxn(n+ logn+ 1) empirical error after leaving h[i] out

of the Ratio list

ErrKnnTlratioFast tp + ta+ (L) choose threshold that minimizes

kmaxn(logn+ 4) empirical error after leaving h[i] out

of the Ratio list, FAST version

Table 1: Algorithms for error-bound estimation and their run times.

In addition, when computing the nearest neighbor lists for each the remaining sample xq[p],

we should remove the influence of xq[p] on Σ̂q. Algorithm 6 is of little help in providing an
efficient implementation of these changes for the ErrKnnTlnnlist method. They must be
incorporated directly in the ErrKnnTlnnlist procedure, which leads to an algorithm with run
time Θ(2n2d2 + n2kmax(4kmaxd

2 + logn)), which simplifies to Θ(k2
maxd

2n2) when kmaxd
2 =

Ω(logn). This is significantly slower than the algorithm used to build the original nearest
neighbor lists and is unacceptably slow for medium-to-large data sets. For this reason we have
implemented the following approximation to this method. The second adjustment (removing
the effect of x[i] on Σ̂ for its own nearest neighbor list) is performed using Algorithm 6, and
then the ErrKnnTlnnlist method is performed as before using the adjusted nearest neighbor
lists. This mirrors our implementation of the ErrKnnTlratio method.

Table 5.1 provides a summary of the algorithms we have discussed in this section and their
run times.
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5.2 Bias Adjustment Methods

This section discusses methods that estimate the Bayes error by explicitly (or implicitly) esti-
mating the bias, and then subtracting it from ε̂n. Our approach requires an analytic expression
for the bias. Let ∆ε = εn − ε∗ where εn is the error estimated by the L method and ε∗ is the
Bayes error. Define the bias to be ∆̄ε = En [∆ε] where the expectation is over sample sets of
size n. Under the assumption that n0 = n1 = n/2, Fukunaga gives the following (approximate)
expression for the bias (Fukunaga, 1990)

∆̄ε ∼= b1

(
1

k

)
+ b2

(
k

n

)2/d

+ b3

(
k

n

)4/d

(27)

where b1, b2 and b3 are constant for a given problem. This equation can be re-written as

En[εn] ∼= ε∗ + b1

(
1

k

)
+ b2

(
k

n

)2/d

+ b3

(
k

n

)4/d

(28)

which suggests that we can produce a Bayes error estimate by fitting a curve to the L error
estimates (as a function of k), and choosing the constant term as our estimate of ε∗. To
approximate the expected value on the left hand side of (28) we average the error estimates
over several runs of the L estimation method using bootstrapped samples.

5.3 Summary of Bias Issues

Let ∆τ = τ̂−τ where τ is given in Equation (25) and τ̂ is the data driven choice of threshold. A
careful study of Funukaga’s bias derivation reveals that the coefficients b2 and b3 are (nontrivial)

functions of ∆τ , Σ0 and Σ1, and that the bias from the
(
k
n

)2/d
and

(
k
n

)4/d
terms can be reduced

through the proper choice of these parameters. This observation provides a formal justification
of the threshold selection methods in Section 5.1. It also suggests that the bias might be
further reduced through proper selection of the metric matrices, but the best way to exploit
this knowledge is still an open problem.

In contrast, the curve-fitting approach described in the previous section would seem to
alleviate the need for bias reduction, since it compensates for the bias directly. However, pre-
liminary experiments with this approach show that the error estimates are quite poor when the
bias is large. There are several reasons for this, not the least of which is that the bias expres-
sion in (27) was derived under the assumption that the kNN classifier closely approximates the
optimal classifier. This assumption is clearly violated when the bias is large.

We believe that the most promising approach to Bayes error estimation is a combination
bias reduction and bias adjustment. We revisit this issue in Section 9.

6 Technical Issues not covered by Fukunaga

6.1 Data-Driven Threshold Selection

The threshold selection process employed by the MinErrorThreshold routine in Algorithms 4
and 5 requires further explanation. This routine accepts a sorted list of (h[i], y[i]) pairs and
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returns a threshold τ̂ that minimizes the empirical error under the decision rule h≷ω1
ω0
τ̂ . Since

the (h[i], y[i]) pairs are sorted, the minimum error position can be determined with a single
pass through the list, tracking the error that results from positioning the threshold between
each adjacent pair of ratios. But there are two unresolved issues with this routine. The first
is how to choose the actual threshold value from the interval of possibilities, and the second is
what to do about multiple minima.

We consider first the issue of how to choose the threshold value. Suppose the minimum
error position falls between h[i∗] and h[i∗+1]. Any threshold in the interval (h[i∗], h[i∗+1]) will
minimize the empirical error, but the “left-out” sample may be classified differently depending
on our choice. In fact, one could argue that this choice of threshold has a strong influence on
the accuracy of the leave-one-out error estimate since the classification of the “left-out” sample
is less likely to change if it does not fall in this interval. The question is then how to choose
the threshold from (h[i∗], h[i∗ + 1]). The midpoint of the interval would seem to be a likely
choice, but we argue that it is not the best choice. The thresholded h value is proportional to
the ratio of probability functions for ω0 and ω1, so its sensitivity is not equal with respect to
ω0 and ω1. On the other hand, the log-ratio is equally sensitive with respect to ω0 and ω1. So
a better choice of threshold might be the midpoint of the log ratio interval. Using this choice,
and inverting the log function to obtain a distance ratio threshold gives

τ̂ = exp

(
log(h[i∗]) + log(h[i∗ + 1])

2

)
(29)

This formula is currently in use, although its optimality remains open.

We now turn to the second issue. To this point we have assumed that the minimum error
occurs at a single position in the list, when in fact it may show up in multiple positions. In
fact, we might expect this to be the norm. Once again we can argue that our treatment of this
situation may have a strong impact on the accuracy of the leave-one-out error estimate, since
the classification of “left-out” samples changes more frequently in the multiple minima case.
Our solution is to track all minimum error positions and return a threshold for each (using
the formula in (29)). Classification of “left-out” samples is then accomplished using a majority
vote over the classifications determined from each threshold separately.

Finally, we briefly mention a different strategy for selecting thresholds which simultaneously
addresses both issues raised above. The idea is to fit a low-order polynomial (e.g. second order)
to the “error count versus ratio” data (or perhaps the “error count versus log-ratio” data), and
return the threshold that minimizes this polynomial function. This approach has the potential
of both simplifying our implementation and producing more accurate error estimates.

6.2 Incorporating Prior Probabilities

The sample set XΩ determines an empirical distribution of data that is assumed to be a fair
representation of the true distribution. Similarly, the relative frequency of samples from Xω0

and Xω1 determine empirical priors of the form

P̂(ω0) =
n0

n
, P̂(ω1) =

n1

n
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that are assumed to be (approximately) correct. It is not uncommon however for the empirical
priors to differ significantly from the actual priors. In this case the (data driven) error estimates
will also differ significantly from the truth. To remedy this situation, the true priors must be
incorporated into the error estimation process. There are two ways of doing this:

Resampling: This method adjusts the empirical priors to match the true priors by changing
the relative frequency of samples in Xω0 and Xω1 . This adjustment is accomplished by
resampling (with replacement) the data from Xω0 and Xω1 to produce new sample sets
X̃ω0 and X̃ω1 for which ñ0/ñ = P(ω0) and ñ1/ñ = P(ω1).

Data Weighting: This method associates different weights with the data from Xω0 and Xω1 .

The weight for ωi is given by αωi = P(ωi)

P̂(ωi)
. This weighting has the following affect on the

volumetric kNN method. To determine the kth nearest neighbor distance to be used in
the likelihood ratio we compute the distance to the m = k/α neighbor from the data set.
If m is not an integer, then the distance we seek can be approximated by interpolating
between the distances to the bmc and dme neighbors.

6.3 Tracking Error Types

The Bayes error is comprised of two parts, ε0 and ε1, which represent the (expected) misclassi-
fication rate of data from ω0 and ω1 respectively. It is a simple matter to produce estimates of
ε0 and ε1 along with the estimates of ε. This is accomplished by counting the type 0 and type 1
errors separately. This represents a trivial modification to the existing algorithms. Every time
an error count is adjusted its type (0 or 1) is determined by the corresponding sample label.

6.4 Covariance Modes and Their Updates

The metric matrices Σ̂0 and Σ̂1 are currently obtained as covariance matrix estimates from
the data in Xω0 and Xω1 respectively. These matrices represent roughly d2 free parameters
estimated from n independent samples. If n is small relative to the number of free parameters,
then the (high variance) matrix estimates may be so poor that they cause a serious degradation
in the accuracy of the error estimates produced by the volumetric kNN method. To prevent
this, we place restrictions on the covariance matrices so that the ratio of n to the number of
free parameters is maintained at an acceptable level. As a rule of thumb this ratio should be
larger than 1. With this in mind, the covariance matrices are implemented using one of four
modes depending on the number of samples available. These modes are summarized in Table
6.4. In the FULL mode Σ̂ is estimated using Equation (22). In the DIAGONAL mode Σ̂ is
estimated using only the diagonal entries from Equation (22) and the off diagonal entries are
set to zero. The SCALED IDENTITY mode uses Σ̂ = sI where s is a (data driven) scaler and
I is the identity matrix. The IDENTITY mode uses Σ̂ = I (i.e. the Euclidean distance).

Distance calculations require the inverse of these matrices, or more specifically the product
of their inverse with a difference vector. In addition, the leave-one-out methods require updates
to these matrices that reflect the removal (and restoration) of individual samples. These oper-
ations are trivial when one of the last three matrix modes are in use, but this is not the case
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Mode Number of Samples

FULL d2 + d+ 1 < ni

DIAGONAL 2d+ 1 < ni ≤ d2 + d+ 1

SCALED IDENTITY 2 + d < ni ≤ 2d+ 1

IDENTITY 1 < ni ≤ 2 + d

Table 2: Covariance Matrix Modes

with the FULL covariance mode. To guarantee that all operations are implemented efficiently
and robustly in the FULL covariance mode the matrices are stored as QR decompositions. In
this form it is possible to form an inverse matrix vector product in order d2 time. In addition,
all matrix updates can be performed in order d2 time.

7 Algorithm Enhancements and Computational Issues

7.1 An Efficient Implementation of the ErrKnnTlratio Method

In section 5.1 we described a brute force implementation of the ErrKnnTlratio method of
threshold selection. This method chooses a threshold for each sample x[i] by removing h[i]
from the ratio list and then minimizing the empirical error over the remaining samples. In this
section we describe a more efficient implementation of this method. It starts by computing the
sorted ratio list and scanning the entire list to determine the minimum error (as in Algorithm
3). This error is then adjusted to compensate for the effect of leaving out samples one at a time.
The final procedure is quite simple, although the derivation that follows is somewhat involved.

Suppose we’ve scanned the ratio list and determined the minimum error eA and correspond-
ing threshold(s). To aid in our exposition, a hypothetical landscape showing the error count
as a function of threshold value is shown in Figure 6. Note that the error count changes by
1 each time the threshold moves past a ratio h[i] from our list. Note also that the landscape
contains multiple global minima, a situation we expect to occur frequently in practice. The
classification rule that we employ when there are multiple global minima is a majority vote
over the classifications obtained using each threshold separately. Ties are resolved by a coin
flip. Thus, if x[i] belongs to ω0 and the number of global minima to the right of h[i] is greater
(less) than the number to the left, then x[i] is correctly (incorrectly) classified (prior to leave-
one-out). Similarly, if x[i] belongs to ω1 and the number of global minima to the left of h[i] is
greater (less) than the number to the right, then x[i] is correctly (incorrectly) classified (prior
to leave-one-out). Samples for which the number of global minima is equal on the left and right
are classified correctly (incorrectly) half the time (prior to leave-one-out).

Now, in the leave-one-out procedure the removal of h[i] from the list has the following
effect(s) on the landscape:

1. If x[i] ∈ ω0 then the landscape is increased by 1 at all positions to the right of h[i] (see
illustration in Figure 7).
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Figure 6: Landscape of error count versus threshold value.
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Figure 7: Adjustment to landscape as a result of leaving out (h[9], ω0). Adjusted landscape is
shown as a dashed line.
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Figure 8: Adjustment to landscape as a result of leaving out (h[15], ω1). Adjusted landscape is
shown as a dashed line.
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2. If x[i] ∈ ω1 then the landscape is decreased by 1 at all positions to the right of h[i] (see
illustration in Figure 8).

The manner in which these changes affect the (re-)classification of the “left-out” sample can
easily be determined as a function of the following variables:

NLeftA[i]: The number of global minima to the left of ratio h[i].

NRightA[i]: The number of global minima to the right of ratio h[i].

NLeftB[i]: The number of local minima with error eB = eA + 1 to the left of ratio h[i].

NRightB [i]: The number of local minima with error eB = eA + 1 to the right of ratio h[i].

The following cases represent the possible ways in which the classification of the “left-out”
sample can change. We consider first the cases for which x[i] ∈ ω0.

Case 1: Prior to being left out x[i] is classified correctly and there are one or more global
minima to the left of h[i] (i.e. NRightA[i] > NLeftA[i] > 0). After its removal, the
global minima on the right will increase by 1, and the new classification will be determined
entirely by the global minima on the left, which all vote to assign x[i] to ω1. Thus, x[i]
is now misclassified, and the error count should be increased by 1.

Case 2: Prior to being left out x[i] is classified correctly, and there are no global minima on
the left (i.e. NRightA[i] > NLeftA[i] = 0). After its removal, the global minima on the
right increase by 1 and end up competing with the local minima on the left to classify x[i].
If NLeftB[i] > NRightA[i] then x[i] will be misclassified, and the error count should be
increased by 1. If NLeftB[i] = NRightA[i] then there is a tie, and the error count should
be increased by 1/2. If NLeftB[i] < NRightA[i] then x[i] remains correctly classified,
and no adjustment in the error count is needed.

Case 3: Prior to being left out, x[i] is classified correctly 1/2 of the time (i.e. NRightA[i] =
NLeftA[i] 6= 0). After its removal, the global minima on the right will increase by 1, and
the new classification will be determined entirely by the global minima on the left, which
all vote to assign x[i] to ω1. Thus, x[i] is now misclassified, and the error count should
be increased by 1/2.

Note that if x[i] ∈ ω0 is misclassified prior to being left out, then raising the landscape to the
right of h[i] can never correct the classification of x[i]. So the error count will never change as
a result of leaving out a sample that is already misclassified. Thus, the cases enumerated above
represent all possible ways in which the error count can change when x[i] ∈ ω0. Note that all
of them lead to an increase in the error count (that is, the error count can never decrease as a
result of the leave-one-out adjustment). The ways in which the error count can change when
x[i] ∈ ω1 are symmetric with those above, and are omitted for brevity.

We are now ready to describe the fast implementation of the ErrKnnTlratio method.
The algorithm is shown in Algorithm 7. Once the sorted ratio list is formed, it is scanned
three times. The first scan is performed by the LocateGlobalMin routine which determines
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the number, locations, and value, (NA, IA, and eA), of the global minima 1. The second scan is
performed by the LocateLocalMin1 routine which determines the number and locations, (NA,
IB), of the local minima with error value eA + 1. Finally, this information is passed to the
AdjustErr routine that scans the ratio list one last time, adjusting the error count for each
sample using the rules outlined above. One final observation is in order. The classification error
will never change for samples whose ratios fall entirely to the left or right of the minima found
in the first two scans. So the AdjustErr routine can restrict its scan to the subset of ratios that
fall in this range. Since this subset is often a small fraction of the total it is computationally
advantageous to do so. Once the nearest neighbor tables have been built, the run time of this
algorithm is proportional to nkmax(logn+ 4).

Algorithm 7 ErrKnnTlratioFast: Compute L error estimate. Use a different threshold for
each sample. The threshold minimizes the error over the remaining samples with the current
sample left out of the ratio list. This is the FAST implementation of this method.

INPUTS: Σ0,Σ1, kmax, LSize,S = XΩ × YΩ

OUTPUTS: Error Counts ek, k = 2, 3, ..., kmax

(NN0,NN1)← BuildKnnTables(Σ0,Σ1, LSize,S)

{The D2(NNj[i][k]) operation retrieves the squared distance to the kth NN of x[i] from ωj}
for k = 2 to kmax do

for all x[i] ∈ XΩ do
h[i]← D2(NN0[i][k])/D2(NN1[i][k])

end for
ρ← Sorth({h[i], y[i]}) {sort the (h, y) pairs by ratio value}
(IA,NA, eA)← LocateGlobalMin(ρ)
(IB,NB)← LocateLocalMin1(ρ, eA)
ek ← AdjustErr(ρ, eA, IA,NA, IB,NB)

end for

Return({ek})

1Note that the locations are represented by a list of indices IA that can be used to index the ratios h[i] where
the minima occur.

41



LANL Technical Report: LA–UR–99–6189 7 Algorithm Enhancements and . . .

Algorithm 8 AdjustErr: Scan a subset of the ratio list and adjust the error count to account
for additional errors due to the leave-one-out procedure.

INPUTS: ρ, eA, IA, IB, NA, NB

OUTPUTS: Adjusted Error Count eA

istart ← min(IA[1], I1[1])
iend ← max(IA[NA], I1[N1])
NLeftA ← 0 , NLeftB ← 0
NRightA ← NA , NRightB ← N1

for i← istart to iend do
if (y[i] = ωA) then

if (NLeftA < NRightA) then
if (NLeftA > 0) then
eA ← eA + 1

else if (NLeftB > NRightA) then
eA ← eA + 1

else if (NLeftB = NRightA) then
eA ← eA + 1/2

end if
else if (NLeftA = NRightA) then
eA ← eA + 1/2

end if
else

if (NLeftA > NRightA) then
if (NRightA > 0) then
eA ← eA + 1

else if (NRightB > NLeftA) then
eA ← eA + 1

else if (NRightB = NLeftA) then
eA ← eA + 1/2

end if
else if (NLeftA = NRightA) then
eA ← eA + 1/2

end if
end if
if (IA[NLeftA] = i) then
NLeftA ← NLeftA + 1
NRightA ← NRightA − 1

end if
if (IB[NLeftB] = i) then
NLeftB ← NLeftB + 1
NRightB ← NRightB − 1

end if
end for

Return(eA)
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7.2 Improved Efficiency by Combining Threshold Options

The true L error estimation procedure ErrKnnTlnnlist is computationally expensive. We
have introduced the ErrKnnTlratioFast procedure as a more efficient means of achieving
similar results. For a slight increase in computational effort, however, it may be possible to
achieve nearly identical results to ErrKnnTlnnlist. This idea is simple. We first run the
ErrKnnTlratioFast procedure and then run the more expensive ErrKnnTlnnlist procedure,
but only on those samples whose leave-one-out classification is likely to change. Samples whose
classification is most likely to change fall near the decision boundary. They can be identified
quite easily during our run of the ErrKnnTlratioFast routine. As it makes its second pass
through the ratio list the LocateLocalMin1 subroutine simply tags all samples whose error
count is close to eA. In many problems these samples make up only a small fraction of the
total, so the additional computational overhead of running the ErrKnnTlnnlist on them is
small.

8 Experimental Results

This section presents empirical results obtained by applying the error estimation techniques
to the three benchmark problems from (Fukunaga, 1990). All three of the benchmarks are
two-class problems in d = 8 dimensions with Gaussian distributions for both ω0 and ω1. The
Bayes error can be determined analytically for these problems and is specified along with the
problem definition below. The acronyms I-I, I-4I and I-Λ, are due to Fukunaga.

Problem I-I:
µT0 = [0, 0, ..., 0], µT1 = [2.56, 0, ..., 0],
Σ0 = Σ1 = I,
Bayes Error = 0.10

Problem I-4I:
µT0 = µT1 = [0, 0, ..., 0],
Σ0 = I, Σ1 = 4I,
Bayes Error = 0.09

Problem I-Λ:
µT0 = [0, 0, ..., 0], µT1 = [3.86, 3.10, 0.84, 0.84, 1.64, 1.08, 0.26, 0.01]
Σ0 = I, Σ1 = Diag(8.41, 12.06, 0.12, 0.22, 1.49, 1.77, 0.35, 2.73),
Bayes Error = 0.019

The error estimation techniques discussed in Section 5 were applied all three problems.
The first set of results is shown in Figures 9-11, which plot the error estimates versus k for
k = 2, 3, ..., 30. These results were obtained using n0 = n1 = 100, Σ̂i = Σi (i.e. true covariance
matrices), and averaging the error estimates over 10 independent sample sets. These conditions
are identical to those of Experiment 14, pp. 349-350 in (Fukunaga, 1990), and our results are a
very close match, with the exception of the L error estimates for the I-Λ problem. We believe
the result in (Fukunaga, 1990) to be in error. This is based partly on the similarity of our
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Figure 9: L (above) and R (below) error estimates for I-I problem with ni = 100 and Σ̂i = Σi.
Results are averaged over 10 independent trials.

results for all other cases, and partly on the fact that we can obtain the exact (erroneous)
result in (Fukunaga, 1990) by restricting the weight matrices to Σ0 = Σ1 = I.

We make the following observations based on the results in Figures 9-11.

1. Without a threshold selection process, the bias can be quite large. This effect can be seen
in the I-4I problem where the bias of the Base method is extremely large.

2. All threshold selection methods tend to reduce the bias.

3. As expected, selecting the threshold via the ErrKnnTemin method (which minimizes
empirical error without employing a leave-one-out strategy) can bias the L error estimate
low, as seen in the I-Λ problem.

4. The variance of the error estimates is larger (relative to the error value) for the I-Λ
problem than the other two. As a general rule we expect the variance to be larger for
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Figure 10: L (above) and R (below) error estimates for I-4I problem with ni = 100 and Σ̂i =
Σi. Results are averaged over 10 independent trials.

problems with smaller Bayes error. Intuitively this happens because there are fewer
samples in error and therefore fewer to contribute to the error estimate.

5. The L and R methods provide correct upper and lower bounds for the Bayes error when
used in conjunction with the appropriate threshold selection technique, i.e. the Temin
technique for the R method and the Tlratio or Tlnnlist technique for the L method.

6. Overall, the best results are obtained using the Tlnnlist technique for the L error esti-
mates and the Temin technique for the R error estimates. However, the more efficient
Tlratio technique for the L estimates also produces good results.
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Figure 11: L (above) andR (below) error estimates for I-Λ problem with ni = 100 and Σ̂i = Σi.
Results are averaged over 10 independent trials.
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The second set of experimental results is shown in Figures 12-14. These results were
obtained in the same way as the others, except that they use a single sample set of size
n0 = n1 = 110, and average the error estimates over 10 bootstrapped sample sets of size
n0 = n1 = 100. In addition, the exact weight matrices are replaced with covariance estimates
from the data. These results represent a more realistic view of what one might see in practice.
They differ from the previous results in that the variance of all the estimates is higher. This
is to be expected, since we are using fewer total samples and are averaging over data sets that
are not independent. In addition, both the L and R estimates are biased lower for the I-I
problem. This bias is due in part to the use of data driven covariance estimates, and in part
to the variance associated with the sampling process (i.e. the extent to which this particular
set of 110 samples represents the true underlying statistics). Generally speaking, the results
presented here are quite good, considering the dimensionality of the problem and the relatively
small sample sizes.
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Figure 12: L (above) and R (below) error estimates for I-I problem with ni = 110 and Σ̂i

estimated from the data. Results are averaged over 10 bootstrapped sets of size
ni = 100.
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Figure 13: L (above) and R (below) error estimates for I-4I problem with ni = 110 and Σ̂i

estimated from the data. Results are averaged over 10 bootstrapped sets of size
ni = 100.
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Figure 14: L (above) and R (below) error estimates for I-Λ problem with ni = 110 and Σ̂i

estimated from the data. Results are averaged over 10 bootstrapped sets of size
ni = 100.
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9 Combining Bias Reduction and Curve Fitting

The following is a straightforward curve-fitting procedure for estimating the Bayes error: use
the brute force procedure in Algorithm 1 (which uses ∆τ = 0) to produce L error estimates
for k = 2, 3, ..., kmax , and then form a Bayes error estimate by fitting the bias expression in
Equation (26) to the ε̂n versus k data (ε̂∗ is the constant term from the fit). Unfortunately,
this approach tends to produce poor estimates of the Bayes error. Reasons for this are best
understood by considering the sources of error associated with this approach.

1. The bias expression in Equations (26) is not exact. It represents a low-order approxima-
tion that is valid only when the kNN classifier closely approximates the Bayes classifier.
Simply put, the bias expression is valid only when the bias is small. Since the bias of
the error estimates from Algorithm 1 may be large, it is inappropriate to fit these error
estimates to the expression in Equation (26).

2. The variance of the sampling process and the error estimation procedures add uncertainty
to the error estimation process. Empirically we have observed the variance of the R error
estimates to be much smaller than those of the L error estimates. This observation
suggests that a more reliable estimate of the Bayes error may be produced by curve
fitting the R error estimates.

3. The variance of the curve-fitting procedure also adds to the uncertainty of the estima-
tion process. The simplest way to reduce this variance is to reduce the number of free
parameters determined by this procedure.

To produce reliable estimates of the Bayes error, we must develop strategies that are effective
in controlling these sources of error. With this in mind, we propose the following two methods
(the second is an extension of the first).

Method 1: This method introduces a new technique for adjusting the threshold that couples
the threshold selection process to the curve fitting procedure. The same threshold is used
for all data samples and all values of k. Consider the following expression for the bias (a
greatly simplified version of (26))

∆̄ε ∼= bt∆t
2 + b1

(
1

k

)
+ b2

(
k

n

)2/d

+ b3

(
k

n

)4/d

(30)

Note that this expression differs from the one in (27) in the bt∆t
2 term. We believe this

to be an important term that was neglected in (Fukunaga, 1990). The basic idea is to
determine the threshold τ̂ that minimizes the effect of the (k/N)2/d and (k/N)4/d terms
in the bias expression. We can show that both b2 and b3 depend on ∆t2, but b1 does not.

Note also that we can relate t to τ̂ through the formula τ =
(
n1|Σ1|
n0|Σ0|e

−t
)2/d

. So we wish

to choose the threshold to minimize the coefficients b3 and b4, or more simply to minimize
the combined contribution of these two terms. An analytical expression for the optimal
threshold is both difficult to derive and inevitably a function of unknown quantities. But
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the desired threshold can be determined empirically as follows. Observe that without the
(k/N)2/d and (k/N)4/d terms the bias takes on the form

∆̄ε ∼= bt∆t
2 + b1

(
1

k

)
(31)

which is approximately constant for large k, i.e. ε̂n ∼= ε∗ + bt∆t
2 for large k. With

this observation, our strategy is to seek a threshold τ̂ that produces error estimates that
are approximately constant for large k. This strategy can be implemented in a brute
force manner by sequentially exploring a range of threshold values, fitting a constant
to the large k error estimates, and retaining the threshold that produces the fit with
smallest variance. Preliminary results from this approach are quite promising. The
constant from the fit provides a good estimate of the Bayes error. Note that it minimizes
the contribution of all terms from the bias expression except bt∆t

2. It also minimizes
the error introduced by the curve-fitting procedure by reducing it to a single parameter
estimation technique (i.e. fitting a constant). Finally, this method lends itself to an
efficient implementation (beyond the scope of this report) that circumvents the need to
run the entire error estimation procedure for each value of τ̂ .

Method 2: This method is an extension of Method 1 designed to compensate for the bt∆t
2

bias term. It begins by using Method 1 to determine a threshold τ̂∗ and corresponding
Bayes error estimate ε̂∗. It then adjusts ε̂∗ by subtracting an estimate of bt∗(∆t

∗)2. Note
that since t and t̂∗ are known, (∆t∗)2 is known, so all that is needed is to estimate bt∗ .
An estimate of bt∗ can be obtained by estimating b1 (the coefficient of the 1/k term in the
bias expression) and then exploiting a known relationship between bt and b1. Specifically
we can show that bt = 0.5b1. To estimate b1 we fit the error estimates for small k (under
the threshold τ̂∗) to the formula

ε̂ = b0 + b1

(
1

k

)
Once we have an estimate of b1, we use the formula below to produce the adjusted estimate
of the Bayes error

ε̂∗adj = ε̂∗ − 0.5b̂1(∆t∗)2
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